COE 301/ ICS 233: Computer Organization

Midterm Exam — Term 211

Saturday, October 30, 2021
10 am — 12 noon

Computer Engineering Department
College of Computing & Mathematics
King Fahd University of Petroleum & Minerals

SOLUTION
Q1 /15 Q2 /16
Q3 /15 Q4 /10
Q5 /10 Q6 /10
Total [76

Select you Section:

O COE 301-01 Dr. Muhamed Mudawar UTR 8 — 8:50 AM
O COE 301-02 Dr. Ayaz Khan UTR 11 -11:50 AM
O ICS 233-01 Dr. Abdel-Aziz Tabakh UTR 9 — 9:50 AM
O ICS 233-02 Dr. Abdel-Aziz Tabakh UTR 10 - 10:50 AM
O ICS 233-03 Dr. Ayaz Khan UTR 11 -11:50 AM
O ICS 233-04 Dr. Ayaz Khan UTR 8 — 8:50 AM

Page 2 of 7

Q1. Instruction Type, Data Definition, and Loaded Values [15 points]

a) (6 points) Write the instruction format (R-type, I-type, or J-type) for each of the following
MIPS instructions.

MIPS Instruction R-Type, I-Type, or J-Type ?
addiu I-type
sll R-type
jal J-type
jr R-type
beq I-type
1w I-type

b) (4 points) Complete the symbol table for the following data definitions showing the
address of each label, given the address of varl is ©x10010000 in the data segment.

.DATA
varl:
var2:
strl:
.ALIGN
var3:
var4:

1, 2, -3, -4, 5, 6, 7

.DOUBLE 1.5e-10

.BYTE

.WORD 0x12345678
.ASCIIZ "Test String\n"
3

+HALF 1000

Label Address

varl 0x10010000
var2 0x10010008
strl 0x1001000C
var3 0x10010020
var4 0x10010028

c) (5 points) Given the data definition of part b, what value is loaded into register $t1 (in
hexadecimal), if Little Endian Byte ordering is used?

Instruction Sequence | Value loaded into $t1 (hexadecimal)
i; ::2j ;?;ia) $t1 = 0x00000001 (1)

i; :tgj ;?gia) $t1 = OXFFFFFFFD (-2)

iz ::2j X?gia) $t1 = OX00000605

1 ::2j ;?;ia) $t1 = ©x00000078

E :3: \2’?39) $t1 = 0x00001234

Page 30of 7

Q2. ALU Instructions [16 points]

a)

b)

d)

(5 points) Given that $t@ = ©x78901234 and $t1 = ©OxABO15678 are two signed
integers, compute the following.

Instruction Value computed (hexadecimal)

$t2 = 9x239168AC
Overflow (Yes / No)? NO

$t3 = OxCDS8EBBBC
Overflow (Yes / No)? YES

add $t2, s$to, s$t1

sub $t3, $to, $t1

sra $t4, $ti1, 8 $t4 = OxFFABO156

Show the addition / subtraction in hexadecimal and indicate whether there is overflow.

11 1 1
78901234 78901234 78901234

+ ABO15678 - ABO15678 + 54FEA987 (1°’s compl +1)
239168AC CD8EBBBC

(4 points) Show the binary representation of the following instructions. Register $t0 is
register number 8. The function code of addu is @x21, and the opcode of addiu is @x9.

Instruction 32-bit Binary Representation
Op Rs Rt Rd sa func
addu $t2, $te, $t1 000000 01000 01001 01010 00000 100001
Op Rs Rt Imml6

addiu $t3, $t1, 8 001001 01001 01011 0POGEEEEEO1000

(4 points) Translate the following assignment statement into a minimal number of MIPS
basic instructions. Assume that £, g, and h are 32-bit integers that are stored in $t0, $t1,
and $t2, respectively. Use shift instructions to achieve multiplication.

f=g+h*1o

sll $t3, $t2, 3 # $t3 = $t2*8
sll $t4, $t2, 1 # $t4 = $t2*2
addu $t5, $t3, $t4 # $t5 = $t2*10 = h*10
addu $to, $t1, $t5 # $t0 = f = g + h*1e

(3 points) Write a minimum sequence of MIPS basic instructions to implement the
following pseudo instructions. You can only modify the $at register as a side effect.

andi $t1,$%$t2,0xABCDOOO1 # AND with a 32-bit immediate
lui $at, OxABCD # $at = OxABCDOOOO
ori $at, $at, oxe001 # $at = OxABCDOOO1

and $t1, $t2, $at

Page 4 of 7

Q3. Control Instructions [15 points]

a)

b)

d)

L1:

(2 points) Write a minimum sequence of MIPS basic instructions to implement the
following pseudo-instruction:

sne $s1, $s2, $s3 # set if not equal
subu $s1, $s2, $s3
sltu $s1, $zero, $si

(2 points) Write a minimum sequence of MIPS basic instructions to implement the
following pseudo-instruction. You can only modify the $at register as a side effect.

bgeu $s1, $s2, next # branch if greater or equal unsigned

sltu $at, $s1, $s2 # 1 point per instruction
beq $at, $zero, next # -0.5 for not using $at

(6 points) The following is a partial MIPS assembly language code:

Address Label Instruction
0x40601C00 L1: bgtz $al, L2
0x40602000 L2: and $t0, .$t.1,. $t2
0x4060201C beq $a0, .$a.2 ,. L2
0x4062A000 J I..1.

Calculate the 16-bit immediate value (in hexadecimal) in bgtz instruction:
immas = (0x40602000 — 0x40601C04)/4 = 0XO00003FC/4 = OXO0FF
Calculate the 16-bit immediate value (in hexadecimal) in beq instruction:
immas = (0x40602000 — 0x40602020)/4 = - 0x0020/4 = - 0x0008 = OxFFF8

Calculate the 26-bit immediate value (in hexadecimal) in J instruction:

PC L1 : 0100 [0000 0110 0000 0001 1100 0000 00]00

=> immgze : 00 0001 1000 0000 0111 0000 0000 = 0x0180700

(5 points) Translate the following high-level if-statement into MIPS assembly code.
Assume that a, b, ¢ and d are signed integers loaded into registers $t0, $t1, $t2, and
$t3 respectively. You can use pseudo-branch instructions if needed.

if (((@a > c) || (b <=d)) & (a == b)) {
if (c!1=0) { a=c; }
d =a + b;

}

bgt $to, $t2, L1

bgt $t1, $t3, next
bne $to, $t1, next
movn $t0, $t2, $t2
addu $t3, to, st1

if (a > ¢), skip OR

if (b > d), skip if statement
if (a != b), skip IF statement
interior if statement

HOH HH

next: .

Page 5 of 7
Q4. Integer Multiplication [10 points]

a) (7 points) Show the binary multiplication of the following two 16-bit unsigned integers.
The product should be a 32-bit unsigned integer. Do NOT show partial products (rows) that

contain only zeros.

x
B
[O]
(O]
(O]
[O]
RO
(O]
[OIEO]
o0
[OIO]
Lo
o0
(O]
Lo
[OIO]
(O]

Carry bits 1111

[O I
(ORI
ORr0®
R OR
OO0 KRR
OO0 R
RPROORR
ORBR
PO O®
(GO
(ORI
PO O®
®0®
()
®0®
ooR
R R
®
®
=

©101101111100106110101101061000100

0101 1011 1110 0101 1010 1101 0100 0100
b) (3 points) To implement a 32-bit by 32-bit tree multiplier in hardware, how many AND
gates are used? How many adders are needed and what is their size? Explain your answer.
Number of AND gates = 32 x 32 = 1024
There are 32 partial product results

Total number of adders = 31 adders to add the 32 partial products

Each adder is 32-bit.

Page 6 of 7
Q5. Tracing the Execution of Assembly Language Code [10 Points]

a) (4 points) Given that Array is defined below and starts at address
0x10010000, explain what the code does and the value of $v@ and $v1 after
executing the following code.

Array: .word 15, -19, 17, -20, 10, -18, 103, -6, -73, 2

la $a@, Array # $a0 = 0x10010000
addi $al, $a0, 40
move $vO, $a0d
lw $vi, o($vo)
move $t0, $a0

loop: addi $to, $to, 4
lw $t1, o($te)
bge $t1, $vi1, skip
move $vO, $t0O
move $vi, $t1

skip: bne $t0, $al, loop

The above code locates the minimum element
$v0 = 0x10010020 (address of -73)
$vl = -73 (minimum value)

b) (6 points) Given that Array is defined below, explain what the code does
and determine the content of Array after executing the following code.

Array: .word 14, 28, -31, 47, 53, 80, -1, 13, 19, 4, 17, 12

la $a@, Array
l1i $al, 6
move $t0, $a0
addi $t1, $a0, 24
loop: 1w $t3, ($t0)
lw $t4, ($t1)
sw $t3, (%$t1)
sw $t4, ($t0)
addi $te, $te, 4
addi $t1, $t1, 4
addi $al1, $al1, -1
bne $al, $zero, loop

The above loop swaps the first six elements of Array with the last six
elements. The New Array Content:
-1, 13, 19, 4, 17, 12, 14, 28, -31, 47, 53, 80

Page 7 of 7
Q6. Write a MIPS Function [10 points]

Write a function gcd(a,b) to compute the greatest common divisor of two
unsigned integers:

gcd(a,0) = a // if (b == 0)
gcd(a,b) = gcd(b,a%b) // a%b is the remainder of division

For example: gcd(8,12) = gcd(12,8) = gcd(8,4) = gcd(4,0) = 4.

Solution: function can be written as a simple loop. No need to

allocate a stack frame and save registers.

Example of Loop Version:

gcd: bne $al, $0, else # branch if (b '= 0) else
move $v0, $al # Sv0 = a
jr Sra # return to caller

else: divu $a0, $al # divide a by b (unsigned)
move $al0, $al # $a0 = b
mfhi $al # $al = remainder a%b
j gcd # jump to gcd

example of recursive version:

gcd:
bne $al, $0, else # branch if (b '= 0) else
move $v0, $al # $v0 = a
jr Sra # return to caller

else: addiu $sp,$sp, -4 # allocate 4 bytes in the Stack
SW $ra, 0(S$sp) # store return address ($ra)
divu $a0, $al # divide a by b (unsigned)
move $al0, S$al # $a0 = b
mfhi $al # $al = remainder a%b
jal gcd # call gcd recursively
1w Sra, 0(S$sp) # restore return address
addiu $sp,$sp, 4 # free the Stack
jr Sra # return to gcd

