

COE 301 / ICS 233: Computer Organization

Midterm Exam – Term 211

Saturday, October 30, 2021

10 am – 12 noon

Computer Engineering Department

College of Computing & Mathematics

King Fahd University of Petroleum & Minerals

SOLUTION

Q1 / 15 Q2 / 16

Q3 / 15 Q4 / 10

Q5 / 10 Q6 / 10

Total / 76

Select you Section:

□ COE 301-01 Dr. Muhamed Mudawar UTR 8 – 8:50 AM

□ COE 301-02 Dr. Ayaz Khan UTR 11 – 11:50 AM

□ ICS 233-01 Dr. Abdel-Aziz Tabakh UTR 9 – 9:50 AM

□ ICS 233-02 Dr. Abdel-Aziz Tabakh UTR 10 – 10:50 AM

□ ICS 233-03 Dr. Ayaz Khan UTR 11 – 11:50 AM

□ ICS 233-04 Dr. Ayaz Khan UTR 8 – 8:50 AM

 Page 2 of 7

Q1. Instruction Type, Data Definition, and Loaded Values [15 points]

a) (6 points) Write the instruction format (R-type, I-type, or J-type) for each of the following

MIPS instructions.

MIPS Instruction R-Type, I-Type, or J-Type ?

addiu I-type

sll R-type

jal J-type

jr R-type

beq I-type

lw I-type

b) (4 points) Complete the symbol table for the following data definitions showing the

address of each label, given the address of var1 is 0x10010000 in the data segment.

.DATA
 var1: .BYTE 1, 2, -3, -4, 5, 6, 7
 var2: .WORD 0x12345678
 str1: .ASCIIZ "Test String\n"
 .ALIGN 3
 var3: .HALF 1000
 var4: .DOUBLE 1.5e-10

Label Address

var1 0x10010000

var2 0x10010008

str1 0x1001000C

var3 0x10010020

var4 0x10010028

c) (5 points) Given the data definition of part b, what value is loaded into register $t1 (in

hexadecimal), if Little Endian Byte ordering is used?

Instruction Sequence Value loaded into $t1 (hexadecimal)

la $t0, var1
lb $t1, 0($t0)

$t1 = 0x00000001 (1)

la $t0, var1
lb $t1, 2($t0)

$t1 = 0xFFFFFFFD (-2)

la $t0, var1
lh $t1, 4($t0)

$t1 = 0x00000605

la $t0, var2
lb $t1, 0($t0)

$t1 = 0x00000078

la $t0, var2
lh $t1, 2($t0)

$t1 = 0x00001234

 Page 3 of 7

Q2. ALU Instructions [16 points]

a) (5 points) Given that $t0 = 0x78901234 and $t1 = 0xAB015678 are two signed

integers, compute the following.

Instruction Value computed (hexadecimal)

add $t2, $t0, $t1
$t2 = 0x239168AC
Overflow (Yes / No)? NO

sub $t3, $t0, $t1
$t3 = 0xCD8EBBBC
Overflow (Yes / No)? YES

sra $t4, $t1, 8 $t4 = 0xFFAB0156

Show the addition / subtraction in hexadecimal and indicate whether there is overflow.

1 1 1 1

 78901234 78901234 78901234

+ AB015678 - AB015678 + 54FEA987 (1’s compl +1)

---------- ----------

 239168AC CD8EBBBC

b) (4 points) Show the binary representation of the following instructions. Register $t0 is

register number 8. The function code of addu is 0x21, and the opcode of addiu is 0x9.

Instruction 32-bit Binary Representation

addu $t2, $t0, $t1
Op Rs Rt Rd sa func
000000 01000 01001 01010 00000 100001

addiu $t3, $t1, 8
Op Rs Rt Imm16
001001 01001 01011 0000000000001000

c) (4 points) Translate the following assignment statement into a minimal number of MIPS

basic instructions. Assume that f, g, and h are 32-bit integers that are stored in $t0, $t1,

and $t2, respectively. Use shift instructions to achieve multiplication.

f = g + h * 10

 sll $t3, $t2, 3 # $t3 = $t2*8

 sll $t4, $t2, 1 # $t4 = $t2*2

 addu $t5, $t3, $t4 # $t5 = $t2*10 = h*10

 addu $t0, $t1, $t5 # $t0 = f = g + h*10

d) (3 points) Write a minimum sequence of MIPS basic instructions to implement the

following pseudo instructions. You can only modify the $at register as a side effect.

andi $t1,$t2,0xABCD0001 # AND with a 32-bit immediate

lui $at, 0xABCD # $at = 0xABCD0000

ori $at, $at, 0x0001 # $at = 0xABCD0001

and $t1, $t2, $at

 Page 4 of 7

Q3. Control Instructions [15 points]

a) (2 points) Write a minimum sequence of MIPS basic instructions to implement the

following pseudo-instruction:

sne $s1, $s2, $s3 # set if not equal
subu $s1, $s2, $s3
sltu $s1, $zero, $s1

b) (2 points) Write a minimum sequence of MIPS basic instructions to implement the

following pseudo-instruction. You can only modify the $at register as a side effect.

bgeu $s1, $s2, next # branch if greater or equal unsigned

sltu $at, $s1, $s2 # 1 point per instruction

beq $at, $zero, next # -0.5 for not using $at

c) (6 points) The following is a partial MIPS assembly language code:

Address Label Instruction

0x40601C00 L1: bgtz $a1, L2
 . . .
0x40602000 L2: and $t0, $t1, $t2
 . . .
0x4060201C beq $a0, $a2, L2
 . . .
0x4062A000 J L1

Calculate the 16-bit immediate value (in hexadecimal) in bgtz instruction:

imm16 = (0x40602000 – 0x40601C04)/4 = 0x000003FC/4 = 0x00FF

Calculate the 16-bit immediate value (in hexadecimal) in beq instruction:

imm16 = (0x40602000 – 0x40602020)/4 = - 0x0020/4 = - 0x0008 = 0xFFF8

Calculate the 26-bit immediate value (in hexadecimal) in J instruction:

PC L1 : 0100 [0000 0110 0000 0001 1100 0000 00]00

➔ imm26 : 00 0001 1000 0000 0111 0000 0000 = 0x0180700

d) (5 points) Translate the following high-level if-statement into MIPS assembly code.

Assume that a, b, c and d are signed integers loaded into registers $t0, $t1, $t2, and

$t3 respectively. You can use pseudo-branch instructions if needed.

if (((a > c) || (b <= d)) && (a == b)) {
 if (c != 0) { a = c; }
 d = a + b;
}

 bgt $t0, $t2, L1 # if (a > c), skip OR
 bgt $t1, $t3, next # if (b > d), skip if statement
L1: bne $t0, $t1, next # if (a != b), skip IF statement
 movn $t0, $t2, $t2 # interior if statement
 addu $t3, $t0, $t1
next: . . .

 Page 5 of 7

Q4. Integer Multiplication [10 points]

a) (7 points) Show the binary multiplication of the following two 16-bit unsigned integers.

The product should be a 32-bit unsigned integer. Do NOT show partial products (rows) that

contain only zeros.

 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1
× 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0

Carry bits 1 1 1 1 1 1 1
 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1
 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1
 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1
 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1

 0 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 0

0101 1011 1110 0101 1010 1101 0100 0100

b) (3 points) To implement a 32-bit by 32-bit tree multiplier in hardware, how many AND

gates are used? How many adders are needed and what is their size? Explain your answer.

Number of AND gates = 32 × 32 = 1024

There are 32 partial product results

Total number of adders = 31 adders to add the 32 partial products

Each adder is 32-bit.

 Page 6 of 7

Q5. Tracing the Execution of Assembly Language Code [10 Points]

a) (4 points) Given that Array is defined below and starts at address

0x10010000, explain what the code does and the value of $v0 and $v1 after

executing the following code.

Array: .word 15, -19, 17, -20, 10, -18, 103, -6, -73, 2

 la $a0, Array # $a0 = 0x10010000
 addi $a1, $a0, 40

 move $v0, $a0
 lw $v1, 0($v0)
 move $t0, $a0
loop: addi $t0, $t0, 4
 lw $t1, 0($t0)
 bge $t1, $v1, skip
 move $v0, $t0
 move $v1, $t1
skip: bne $t0, $a1, loop

The above code locates the minimum element

$v0 = 0x10010020 (address of -73)
$v1 = -73 (minimum value)

b) (6 points) Given that Array is defined below, explain what the code does

and determine the content of Array after executing the following code.

Array: .word 14, 28, -31, 47, 53, 80, -1, 13, 19, 4, 17, 12

 la $a0, Array
 li $a1, 6
 move $t0, $a0
 addi $t1, $a0, 24

loop: lw $t3, ($t0)
 lw $t4, ($t1)
 sw $t3, ($t1)
 sw $t4, ($t0)
 addi $t0, $t0, 4
 addi $t1, $t1, 4
 addi $a1, $a1, -1
 bne $a1, $zero, loop

The above loop swaps the first six elements of Array with the last six

elements. The New Array Content:

 -1, 13, 19, 4, 17, 12, 14, 28, -31, 47, 53, 80

 Page 7 of 7

Q6. Write a MIPS Function [10 points]

Write a function gcd(a,b) to compute the greatest common divisor of two

unsigned integers:

gcd(a,0) = a // if (b == 0)

gcd(a,b) = gcd(b,a%b) // a%b is the remainder of division

For example: gcd(8,12) = gcd(12,8) = gcd(8,4) = gcd(4,0) = 4.

Solution: function can be written as a simple loop. No need to

allocate a stack frame and save registers.

Example of Loop Version:

gcd: bne $a1, $0, else # branch if (b != 0) else

 move $v0, $a0 # $v0 = a

 jr $ra # return to caller

else: divu $a0, $a1 # divide a by b (unsigned)

 move $a0, $a1 # $a0 = b

 mfhi $a1 # $a1 = remainder a%b

 j gcd # jump to gcd

example of recursive version:

gcd:

 bne $a1, $0, else # branch if (b != 0) else

 move $v0, $a0 # $v0 = a

 jr $ra # return to caller

else: addiu $sp,$sp, -4 # allocate 4 bytes in the Stack

 sw $ra, 0($sp) # store return address ($ra)

 divu $a0, $a1 # divide a by b (unsigned)

 move $a0, $a1 # $a0 = b

 mfhi $a1 # $a1 = remainder a%b

 jal gcd # call gcd recursively

 lw $ra, 0($sp) # restore return address

 addiu $sp,$sp, 4 # free the Stack

 jr $ra # return to gcd

